<div dir="ltr"><div class="gmail_extra"><div class="gmail_quote"><div>Thanks Robby and Matthias!</div><div> </div><blockquote class="gmail_quote" style="margin:0 0 0 .8ex;border-left:1px #ccc solid;padding-left:1ex">
Congratulations James. May your future be bright and fast. -- Matthias<br>
<br>
<br>
<br>
<br>
<br>
On Apr 23, 2014, at 1:52 PM, Robby Findler <<a href="mailto:robby@eecs.northwestern.edu">robby@eecs.northwestern.edu</a>> wrote:<br>
<br>
> James successfully defended his dissertation today. Below is a taste.<br>
><br>
> Congrats, James!<br>
><br>
> Robby<br>
><br>
><br>
> Many modern high-level or scripting languages are implemented around<br>
> an interpretive run-time system, often with a JIT compiler. Examples<br>
> include the Racket runtime system, the Parrot virtual machine, and the<br>
> virtual machines underlying Perl, Python, Ruby, and other<br>
> productivity-oriented languages. These runtime systems are often the<br>
> result of many man-years of effort, and they have been carefully tuned<br>
> for capability, functionality, correctness, and performance.<br>
><br>
> For the most part, such runtime systems have not been designed to<br>
> support parallelism on multiple processors. Even when a language<br>
> supports constructs for concurrency, they are typically implemented<br>
> through co-routines or OS-level threads that are constrained to<br>
> execute one at a time.<br>
><br>
> This limitation has become a serious issue, as it is clear that<br>
> exploiting parallelism is essential to harnessing performance in<br>
> future processor generations. Whether computer architects envision the<br>
> future as involving homogeneous or heterogeneous multicores, and with<br>
> whatever form of memory coherence or consistency model, the common<br>
> theme is that the future is parallel and that language implementations<br>
> must adapt. The essential problem is making the language<br>
> implementation safe for low-level parallelism, i.e., ensuring that<br>
> even when two threads are modifying internal data structures at the<br>
> same time, the runtime system behaves correctly.<br>
><br>
> One approach to enabling parallelism would be to allow existing<br>
> concurrency constructs to run in parallel, and to rewrite or revise<br>
> the runtime system to carefully employ locking or explicit<br>
> communication. Experience with that approach, as well as the<br>
> persistence of the global interpreter lock in implementations for<br>
> Python and Ruby, suggests that such a conversion is extremely<br>
> difficult to perform correctly. Based on the even longer history of<br>
> experience in parallel systems, one would also expect the result to<br>
> scale poorly as more and more processors become available. The<br>
> alternative of simply throwing out the current runtime and<br>
> re-designing and implementing it around a carefully designed<br>
> concurrency model is no better, as it would require discarding years<br>
> or decades of effort in building an effective system, and this<br>
> approach also risks losing much of the language?s momentum as the<br>
> developers are engaged in tasks with little visible improvement for a<br>
> long period.<br>
><br>
> This dissertation investigates a new technique for parallelizing<br>
> runtime systems, called slow-path barricading. The technique is based<br>
> on the observation that the core of many programs ? and particularly<br>
> the part that runs fast sequentially and could benefit most from<br>
> parallelism ? involves relatively few side effects with respect to the<br>
> language implementation?s internal state. Thus, instead of wholesale<br>
> conversion of the runtime system to support arbitrary concurrency, we<br>
> add language constructs that focus and restrict concurrency where the<br>
> implementation can easily support it.<br>
><br>
> Specifically, the set of primitives in a language implementation is<br>
> partitioned into safe (for parallelism) and unsafe categories. The<br>
> programmer is then given a mechanism to start a parallel task; as long<br>
> as the task sticks to safe operations, it stays in the so-called fast<br>
> path of the implementation and thus is safe for parallelism. As soon<br>
> as the computation hits a barricade, the runtime system suspends the<br>
> computation until the operation can be handled in the more general,<br>
> purely sequential part of the runtime system.<br>
><br>
> Although the programming model allows only a subset of language<br>
> operations to be executed in parallel, this subset roughly corresponds<br>
> to the set of operations that the programmer already knows (or should<br>
> know) to be fast in sequential code. Thus, a programmer who is<br>
> reasonably capable of writing fast programs in the language already<br>
> possesses the knowledge to write a program that avoids unsafe<br>
> operations?and one that therefore exhibits good scaling for<br>
> parallelism. Furthermore, this approach enables clear feedback to the<br>
> programmer about when and how a program uses unsafe operations.<br>
><br>
><br>
> Thesis: We can incrementally add effective parallel programming<br>
> primitives and tool support to legacy sequential runtime systems with<br>
> a modest investment of effort.<br>
><br><br>
</blockquote></div><br></div></div>