<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD>
<META http-equiv=Content-Type content="text/html; charset=utf-8">
<META content="MSHTML 6.00.6000.16788" name=GENERATOR>
<STYLE></STYLE>
</HEAD>
<BODY
style="WORD-WRAP: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space"
bgColor=#ffffff>
<DIV><FONT face="Courier New" size=2></FONT> </DIV>
<BLOCKQUOTE
style="PADDING-RIGHT: 0px; PADDING-LEFT: 5px; MARGIN-LEFT: 5px; BORDER-LEFT: #000000 2px solid; MARGIN-RIGHT: 0px">
<DIV style="FONT: 10pt arial">----- Original Message ----- </DIV>
<DIV
style="BACKGROUND: #e4e4e4; FONT: 10pt arial; font-color: black"><B>From:</B>
<A title=gregory.woodhouse@gmail.com
href="mailto:gregory.woodhouse@gmail.com">Gregory Woodhouse</A> </DIV>
<DIV style="FONT: 10pt arial"><B>To:</B> <A title=plt-scheme@list.cs.brown.edu
href="mailto:plt-scheme@list.cs.brown.edu">PLT List</A> </DIV>
<DIV style="FONT: 10pt arial"><B>Sent:</B> Thursday, January 01, 2009 8:33
PM</DIV>
<DIV style="FONT: 10pt arial"><B>Subject:</B> [plt-scheme] Currying and
physics</DIV>
<DIV><BR></DIV>
<DIV>It seems to me that operators actually provide a more direct analog to
currying than the (classical) fields discussed in that note. In elementary
quantum mechanics, a particle is represented by a wave function (a complex
valuied function of time and position). Observable quantities (or just
observables) correspond to (linear) operators on the space of so-called wave
functions. For example, in one dimension, position corresponds to i h bar (the
imaginary unit times Planck's constant divided 2 pi) times differentiation
with respect to x). In LaTeX, that's</DIV></BLOCKQUOTE>
<DIV><FONT face="Courier New" size=2>You probably mean (linear) momentum.
Position can be represented by an operator (function, functional) Ψ
-> xΨ. The probability to find the particle at position x at time t
is:</FONT></DIV>
<DIV><FONT face="Courier New" size=2>integral over x of Ψ*(x,t) x Ψ(x,t) divided
by</FONT></DIV>
<DIV><FONT face="Courier New" size=2>the integral over x of Ψ*(x,t)
Ψ(x,t)</FONT><FONT face="Courier New"><FONT size=2>,</FONT></FONT></DIV>
<DIV><FONT face="Courier New"><FONT size=2>where Ψ*</FONT></FONT><FONT
face="Courier New"><FONT size=2> is the complex conjugate of
Ψ.</DIV></FONT></FONT>
<DIV><FONT face="Courier New" size=2>In this case momentum is represented by the
function Ψ -> (iħ/2π)(δΨ/δx).</FONT></DIV>
<DIV><FONT face="Courier New" size=2>You could have choosen Ψ(x)=1/(1+x^2) as a
function with finite norm,</FONT></DIV>
<DIV><FONT face="Courier New" size=2>or in three dimensions
1/(1+x^2+y^2+z^2)</FONT></DIV>
<DIV><FONT face="Courier New" size=2>In practice wave functions are often
represented by time independent vectors (called kets) in a Hilbert
space.</FONT></DIV>
<DIV><FONT face="Courier New" size=2>Which functions Ψ</FONT><FONT
face="Courier New"><FONT size=2> are to be included in this space is determined
by the law of conservation of energy. In quantum mechanics this law says: HΨ=EΨ,
where H is the so called Hamiltonian (an operator representing energy) and E a
real number. The equation must be solved for both Ψ and E (and the solution
usually consists of an infinite number of pairs Ψ and E) By using the symmetry
properties of the system being studied, many parts of the integrals can be
simplified to summations.</DIV></FONT></FONT>
<DIV><FONT face="Courier New" size=2>Jos</FONT></DIV>
<DIV><FONT face="Courier New"><FONT size=2><FONT face="Courier New"
size=2></FONT></FONT></FONT> </DIV>
<DIV><FONT face="Courier New"><FONT size=2><FONT face="Courier New"
size=2></FONT></FONT></FONT> </DIV>
<DIV><FONT face="Courier New"><FONT size=2><FONT face="Courier New"
size=2></FONT></FONT></FONT> </DIV>
<DIV><FONT face="Courier New"><FONT size=2><FONT face="Courier New"
size=2></FONT></FONT></FONT> </DIV>
<BLOCKQUOTE
style="PADDING-RIGHT: 0px; PADDING-LEFT: 5px; MARGIN-LEFT: 5px; BORDER-LEFT: #000000 2px solid; MARGIN-RIGHT: 0px">
<DIV> </DIV>
<DIV><BR></DIV>
<DIV><SPAN class=Apple-style-span
style="FONT-SIZE: 11px; FONT-FAMILY: 'Lucida Grande'; -webkit-border-horizontal-spacing: 2px; -webkit-border-vertical-spacing: 2px">P
= i\hbar \frac{\partial}{\partial x}</SPAN></DIV>
<DIV><FONT class=Apple-style-span face="'Lucida Grande'" size=3><SPAN
class=Apple-style-span
style="FONT-SIZE: 11px; -webkit-border-horizontal-spacing: 2px; -webkit-border-vertical-spacing: 2px"><BR></SPAN></FONT></DIV>
<DIV><FONT class=Apple-style-span face="'Lucida Grande'" size=3><SPAN
class=Apple-style-span
style="FONT-SIZE: 11px; -webkit-border-horizontal-spacing: 2px; -webkit-border-vertical-spacing: 2px">So,
if psi (the letter traditionally used to represent wave functions) is x^2,
then Px is 2i \hbar x (never mind the fact that it isn't square integrable).
So, if you think of the probability density for position being function of
both the observable (in this case, position) and the quantum state, you take
the first input variable (the observable) and generate a function (or, as some
people like to say, functional) that can be applied to to the wave function to
give you a new function (this time of the interval over which you are
integrating), then you take the integral (another function!) to get the
expected position. Without that last step, you get yet another function the
norm of which is the probability density of position.</SPAN></FONT></DIV>
<P>
<HR>
<P></P>_________________________________________________<BR> For
list-related administrative tasks:<BR>
http://list.cs.brown.edu/mailman/listinfo/plt-scheme<BR></BLOCKQUOTE></BODY></HTML>