
PLT Scheme
Simulation Collection

PLT Scheme
Knowledge-Based Simulation

Part 2 – The Simulation Collection

Dr. Doug Williams
m.douglas.williams@saic.com

November 16, 2005

July 31, 2005 Denver LISP User’s Group 2

PLT Scheme
Simulation Collection Agenda

• Introduction
• Simplified Simulation Example
• PLT Scheme Simulation Collection
• Future Plans
• Questions and Answers
• Workshop

July 31, 2005 Denver LISP User’s Group 3

PLT Scheme
Simulation Collection

Introduction

July 31, 2005 Denver LISP User’s Group 4

PLT Scheme
Simulation Collection Motivation

• Recreate a previously available knowledge-based simulation
environment capability
– Previously implemented in Symbolics Common LISP
– Re-implement in PLT Scheme

• Availability – free download (www.drscheme.org)
• Portability – Windows, Linux, UNIX, Mac OS X

• Extend previous work
– Provide a better mathematical framework
– Implement a process-based simulation engine
– Support combined discrete-event and continuous simulations
– Implement an efficient rule-based inference engine

• Provide a framework for implementing advanced knowledge-based
simulations

http://www.drscheme.org/

July 31, 2005 Denver LISP User’s Group 5

PLT Scheme
Simulation Collection PLT Scheme Collections

• PLT Scheme Science Collection
– Provides the mathematical and analysis framework
– Previously part of the simulation collection, but provides

functionality that is useful outside of simulations
– Inspired by the GNU Scientific Library (GSL)

• PLT Scheme Simulation Collection
– Provides a process-based, discrete-event simulation

engine with automatic data collection
– Supports combined discrete and continuous simulations
– Designed to facilitate component-based simulation

models
• PLT Scheme Inference Collection

– Provides an efficient rule-based inference engine
– Support both forward chaining (data-driven) and

backward chaining (goal-driven) inferencing
– Integrated with the simulation collection, i.e. inferencing

can be done on simulation objects

PLT Scheme
Science Collection

PLT Scheme
Simulation Collection

PLT Scheme
Inference Collection

July 31, 2005 Denver LISP User’s Group 6

PLT Scheme
Simulation Collection PLT Scheme Science Collection

• Machine Constants
• Mathematical Constants and Functions
• Special Functions
• Random Number Generation
• Random Distributions
• Statistics
• Histograms
• Ordinary Differential Equations (Version 2.0)
• Chebyshev Approximations

July 31, 2005 Denver LISP User’s Group 7

PLT Scheme
Simulation Collection PLT Scheme Simulation Collection

• Simulation Environments (Basic and Hierarchical)
• Simulation Control (Basic and Advanced)
• Events
• Processes
• Resources
• Data Collection
• Sets
• Continuous Simulation Models
• Components

July 31, 2005 Denver LISP User’s Group 8

PLT Scheme
Simulation Collection PLT Scheme Inference Collection

• Inference Environment
• Inference Control
• Rule Sets
• Rules
• Assertions

July 31, 2005 Denver LISP User’s Group 9

PLT Scheme
Simulation Collection Status

• Development of all three collections is being moved to the
Schematics project at SourceForge.

• PLT Scheme Science Collection
– Version 2.0 Stable

• PLT Scheme Simulation Collection
– Version 0.9 Stable
– Features remaining for Version 1.0 release

• Hierarchical environments
• Components

– Working on reference manual for Version 1.0 release
• PLT Scheme Inference Collection

– Code for a naïve forward-chaining inference engine has been ported to
PLT Scheme

July 31, 2005 Denver LISP User’s Group 10

PLT Scheme
Simulation Collection Schedule

• PLT Scheme Science Collection
– Release 1.0 October 2004
– Release 2.0 November 2005

• Ordinary Differential Equations (ODEs)

• PLT Scheme Simulation Collection
– Release 0.9 November 2005
– Release 1.0 December 2005

• PLT Scheme Inference Collection
– Release 1.0 July 2006 (tentative)

July 31, 2005 Denver LISP User’s Group 11

PLT Scheme
Simulation Collection

Simplified Simulation Example

July 31, 2005 Denver LISP User’s Group 12

PLT Scheme
Simulation Collection Simplified Simulation Example

• This Simplified Simulation Example condenses the basic discrete-
event elements of the simulation collection and an example
simulation model into a short, complete implementation with no
dependencies.

• It will be used to examine the implementation of a continuation-
based, discrete-event simulation engine.

• Basic elements
– Event Definition and Scheduling
– Simulation Control
– Random Distributions (to remove external dependencies)
– Example Simulation Model

July 31, 2005 Denver LISP User’s Group 13

PLT Scheme
Simulation Collection Continuations

• A continuation captures the current execution state of a
computation. It defines how the computation will proceed with the
value of the current expression.

• Continuations are first-class objects in Scheme.
• Consider the expression (+ 3 (* 2 4))

– At the point where the subexpression (* 2 4) is being evaluated, the
current continuation is (+ 3 #) [called from the top-level read-eval-
print-loop (REPL)], where # is the value of the subexpression.

• call-with-current-continuation (or call/cc) allows the
capture of the current continuation.

• The let/cc macro provides a more convenient syntax for the most
common usage of call/cc.

July 31, 2005 Denver LISP User’s Group 14

PLT Scheme
Simulation Collection Continuations (cont’d)

• (+ 3 (call/cc (lambda (cc) (* 2 4))))
– Evaluates (* 2 4) with the current continuation bound to the lambda

variable cc. But, it doesn’t do anything with the continuation.
• (+ 3 (let/cc cc (* 2 4)))

– This expands into the previous expression. let/cc provides a
convenient form for the most common usage of call/cc.

• (+ 3 (let/cc cc (* (cc 2) 4))))
– Here, we actually call the continuation cc with a value of 2.
– Remember that the continuation is (+ 3 #) [called from the top-level

read-eval-print-loop (REPL)].
– (cc 2) passes its argument, 2 in this case, to the continuation, which

continues its execution with that value. In this case, returning 5 to the
REPL, which prints it and loops back to get another expression.

July 31, 2005 Denver LISP User’s Group 15

PLT Scheme
Simulation Collection Continuations (cont’d)

• Remember that continuations are first-class objects.
• (define cc-save #f)

(+ 3 (let/cc cc (set! cc-save cc)
(* 2 4)))

– Saves the continuation (+ 3 #) in a global variable cc-save.
• (cc-save 2) → 5

– Calls the saved continuation (+ 3 #), which returns 5 to the REPL.
• (+ 4 (cc-save 2)) → 5

– Calls the saved continuation (+ 3 #), which returns 5 to the REPL.
The continuation (+ 4 #), which was waiting to get the value of the
subexpression (cc-save 2), is abandoned.

• (printf “value = ~a~n” (cc-save -3)) → 0
– More of the same, returning 0 to the REPL. Again, the waiting

continuation is abandoned.

July 31, 2005 Denver LISP User’s Group 16

PLT Scheme
Simulation Collection Continuations (cont’d)

• (define cc-save #f)
(printf “value = ~a~n”

(+ 3 (let/cc cc
(set! cc-save cc) (* (cc 2) 4))))

– Prints “value = 5” and returns to the REPL.
• (cc-save 4)

– Prints “value = 7” and returns to the REPL.
• (let loop ((i 0))

(if (= i 10)
(cc-save i)
(loop (+ i 1))))

– On the 11th iteration of the loop, calls the continuation cc-save, which
prints “value = 13” and returns to the REPL.

July 31, 2005 Denver LISP User’s Group 17

PLT Scheme
Simulation Collection Event Definition and Scheduling

• Defines the event structure, event list, and scheduling functions.
• The event structure has three fields:

– time - time the event is to occur
– function - function to apply
– arguments - arguments to the function

• The event list is implemented as the global variable *event-
list*. It is ordered by ascending time values.

• The schedule function adds an event to the event list.
• Event scheduling uses a simple recursive function to add the event

at the appropriate place in the event list.

July 31, 2005 Denver LISP User’s Group 18

PLT Scheme
Simulation Collection Event Definition and Scheduling Code

(define *event-list* ‘())

(define-struct event (time function arguments))

(define (event-schedule event event-list)
(cond ((null? event-list)

(list event))
((< (event-time event)

(event-time (car event-list)))
(cons event event-list))

(else
(cons (car event-list)

(event-schedule event (cdr event-list))))))

(define (schedule event)
(set! *event-list* (event-schedule event *event-list*)))

July 31, 2005 Denver LISP User’s Group 19

PLT Scheme
Simulation Collection Simulation Control

• Simulation control implements the main simulation loop and
associated simulation control routines.

• The main simulation loop is implemented by the start-
simulation function.

• The stop-simulation function allows user simulation code to exit
the main simulation loop.

• The wait/work function allows user simulation code to simulate
the passage of time.

• These routines make heavy use of continuations in their
implementations
– Thus the term continuation-based simulation

July 31, 2005 Denver LISP User’s Group 20

PLT Scheme
Simulation Collection Simulation Control Code

(define *time* 0.0) ; current simulation time
(define *event* #f) ; currently executing event
(define *loop-exit* #f) ; main loop exit continuation
(define *loop-next* #f) ; main loop next continuation

(define (wait/work delay)
(let/cc continue
;; Reuse the current event - it would become garbage anyway
(set-event-time! *event* (+ *time* delay))
(set-event-function! *event* continue)
(set-event-arguments! *event* '())
(schedule *event*)
;; Done with this event
(set! *event* #f)
;; Return to the main loop
(*loop-next*)))

(define (stop-simulation)
(*loop-exit*))

July 31, 2005 Denver LISP User’s Group 21

PLT Scheme
Simulation Collection Simulation Control Code (cont’d)

(define (start-simulation)
(let/ec exit
;; Save the main loop exit continuation
(set! *loop-exit* exit)
;; Main loop
(let loop ()
(let/cc next
;; Save the main loop next continuation
(set! *loop-next* next)
;; Exit if no more events
(if (null? *event-list*)
(exit))

;; Execute the next event
(set! *event* (car *event-list*))
(set! *event-list* (cdr *event-list*))
(set! *time* (event-time *event*))
(apply (event-function *event*)

(event-arguments *event*)))
(loop))))

July 31, 2005 Denver LISP User’s Group 22

PLT Scheme
Simulation Collection Random Distributions

• Simple implementations of random-flat and random-
exponential to remove external dependencies.

• Uses the PLT Scheme built-in random function.

July 31, 2005 Denver LISP User’s Group 23

PLT Scheme
Simulation Collection Example Simulation Model

• This is the same simple simulation model that will be used (and
extended) in the PLT Scheme Simulation Collection examples.

• (generator n) – generates n customers arriving into the system
with arrival times that are exponentially distributed with a mean of
4.0.

• (customer i) – the ith customer. The time each customer is in
the system is uniformly distributed between 2.0 and 10.0.

• (run-simulation n) – resets and runs the simulation of n
customers, unless terminated by a call to stop-simulation.

July 31, 2005 Denver LISP User’s Group 24

PLT Scheme
Simulation Collection Example Simulation Model Code

(define (generator n)
(do ((i 0 (+ i 1)))

((= i n) (void))
(wait/work (random-exponential 4.0))
(schedule (make-event *time* customer (list i)))))

(define (customer i)
(printf "~a: customer ~a enters~n" *time* i)
(wait/work (random-flat 2.0 10.0))
(printf "~a: customer ~a leaves~n" *time* i))

(define (run-simulation n)
(set! *time* 0.0)
(set! *event-list* '())
(schedule (make-event 0.0 generator (list n)))
;(schedule (make-event 50.0 stop-simulation '()))
(start-simulation))

July 31, 2005 Denver LISP User’s Group 25

PLT Scheme
Simulation Collection Example Simulation Model Output

>(run-simulation 10)
1.9492232981483808: customer 0 enters
6.174559533164965: customer 0 leaves
8.203725663933895: customer 1 enters
13.17036109975352: customer 1 leaves
14.146934654400557: customer 2 enters
16.435199558120686: customer 3 enters
18.93973929046175: customer 2 leaves
20.149969364833552: customer 3 leaves
20.44348015441581: customer 4 enters
26.21577096163317: customer 4 leaves
31.877101770738783: customer 5 enters
35.18128225872916: customer 5 leaves
36.11418547608223: customer 6 enters
38.63170173146095: customer 6 leaves
38.89736291069112: customer 7 enters
41.059028743352386: customer 8 enters
43.42485411162204: customer 9 enters
43.55302784829924: customer 8 leaves
46.92743758905254: customer 7 leaves
50.70005940715498: customer 9 leaves

July 31, 2005 Denver LISP User’s Group 26

PLT Scheme
Simulation Collection

PLT Scheme Simulation Collection

July 31, 2005 Denver LISP User’s Group 27

PLT Scheme
Simulation Collection PLT Scheme Simulation Collection

• Simulation Environments (Basic)
• Simulation Control (Basic)
• Events
• Processes
• Resources
• Data Collection
• Sets
• Continuous Simulation Models
• Simulation Classes
• Simulation Control (Advanced)
• Simulation Environments (Hierarchical)
• Components

July 31, 2005 Denver LISP User’s Group 28

PLT Scheme
Simulation Collection Simulation Environment (Basic)

• A simulation environment encapsulates the state of a simulation.
– Time
– Event lists (now and future)
– Loop and exit continuations
– Process and event being executed

• Multiple simulation environments may exist at the same time.
– Nested simulation environments are useful for data collection across

multiple simulation runs (refer to the Open Loop and Closed Loop
examples).

– Nested simulation environments might be used to allow a low-fidelity
model to reach steady state before kicking off a high-fidelity model.

– Multiple, independent (or cooperating) models may exist as part of a
larger system.

– Note that these usages are different than hierarchical simulation
environments, which are discussed later.

July 31, 2005 Denver LISP User’s Group 29

PLT Scheme
Simulation Collection Simulation Environment (Basic) (cont’d)

• Fields in a (basic) simulation environment:
– running? #t if the main loop is running
– time simulation time
– now-event-list events to be executed now
– future-event-list events to be executed in the future
– loop-next continuation to return to the main loop
– loop-exit continuation to exit the main loop
– event executing event or #f
– process executing process or #f

July 31, 2005 Denver LISP User’s Group 30

PLT Scheme
Simulation Collection Current Simulation Environment

• The parameter current-simulation-environment represents
the current simulation environment.
– Defaults to default-simulation-environment

• Routines are provided to get and set fields in the current-
simulation-environment.
– (current-simulation-running? [boolean])

– (current-simulation-time [real])
– (current-simulation-now-event-list [event-list])
– (current-simulation-future-event-list [event-list])

– (current-simulation-loop-next [continuation])
– (current-simulation-loop-exit [continuation])
– (current-simulation-event [event])

– (current-simulation-process [process])

July 31, 2005 Denver LISP User’s Group 31

PLT Scheme
Simulation Collection Current Simulation Environment (cont’d)

• The with-simulation-environment macro evaluates its body
with current-simulation-environment set to the specified
simulation environment.
– (with-simulation-environment simulation-environment

body ...)

• The with-new-simulation-environment macro evaluates its
body with current-simulation-environment set to a new
simulation environment.
– (with-new-simulation-environment

body ...)

July 31, 2005 Denver LISP User’s Group 32

PLT Scheme
Simulation Collection Simulation Control (Basic)

• The schedule macro schedules an event or process for execution.
– (schedule time (function . arguments))
– (schedule now (function . arguments))
– (schedule (at time) (function . arguments))
– (schedule (in duration) (function . arguments))
– If function is the name of a process, a process instance is created

and scheduled for execution. Otherwise, function must be a
procedural object and an event is scheduled for execution.

• The start-simulation function implements the main simulation
loop. It executes events until there are no more or the loop is
explicitly exited via a call to stop-simulation.

• The stop-simulation function exits the current main simulation
loop.

• The wait/work function simulates the passage of simulated time.
– (wait/work duration)
– wait and work are other names for the same function

July 31, 2005 Denver LISP User’s Group 33

PLT Scheme
Simulation Collection Events

• In a simulation model, an event represents an action that will take
place in the future.

• In the simulation collection, an event represents the future
application of a procedural object to a list of objects.

• Fields in the event structure:
– time Time the event is to occur
– process Process owning the event, or #f
– function Function to be applied
– arguments Arguments to the function

• Because events can represent the application of any functional
objects, including continuations, events can also call the
wait/work function. (In this case, the event object is reused.)
– This is a slight extension to the definition in the first bullet. An event

may represent a sequence of actions.

July 31, 2005 Denver LISP User’s Group 34

PLT Scheme
Simulation Collection Example 0 – Events

; Example 0 - Functions as Events

(require (lib "simulation.ss" "simulation"))
(require (lib "random-distributions.ss" "science"))

(define (generator n)
(do ((i 0 (+ i 1)))

((= i n) (void))
(wait (random-exponential 4.0))
(schedule now (customer i))))

(define (customer i)
(printf "~a: customer ~a enters~n" (current-simulation-time) i)
(work (random-flat 2.0 10.0))
(printf "~a: customer ~a leaves~n" (current-simulation-time) i))

(define (run-simulation n)
(with-new-simulation-environment
(schedule (at 0.0) (generator n))
(start-simulation)))

July 31, 2005 Denver LISP User’s Group 35

PLT Scheme
Simulation Collection Example 0 – Output

(run-simulation 10)
0.6153910608822503: customer 0 enters
5.599485116393393: customer 1 enters
6.411843645405005: customer 2 enters
8.48917994426752: customer 0 leaves
10.275428842274628: customer 1 leaves
14.749397986170655: customer 2 leaves
23.525886616767437: customer 3 enters
27.18604340910279: customer 3 leaves
32.1644631797164: customer 4 enters
33.14558760001698: customer 5 enters
39.67682614849173: customer 4 leaves
40.486553934113665: customer 6 enters
41.168084930967424: customer 5 leaves
45.72670063299798: customer 6 leaves
46.747675912143016: customer 7 enters
49.212327970772435: customer 8 enters
50.556538752352886: customer 9 enters
51.46738784004611: customer 8 leaves
52.514846525674855: customer 7 leaves
56.11635302397275: customer 9 leaves

July 31, 2005 Denver LISP User’s Group 36

PLT Scheme
Simulation Collection Processes

• In a simulation model, a process represents an entity that actively
progresses through time.

• In the simulation collection, a process encapsulates an event object
that executes the body of the process; provides state information;
and, most importantly, provides a handle allowing the process to
interact with other simulation objects (e.g. resources or other
processes).

• A process is defined using the define-process macro.
– (define-process (name . arguments)

body ...)

• Process instances are created via the schedule macro by
specifying the name of the process as the function argument.

July 31, 2005 Denver LISP User’s Group 37

PLT Scheme
Simulation Collection Processes (cont’d)

• Fields for the process structure include:
– event
– state

• The states of a process are:
– PROCESS-TERMINATED
– PROCESS-CREATED
– PROCESS-ACTIVE

– PROCESS-WORKING/WAITING
– PROCESS-WORKING-CONTINUOUSLY
– PROCESS-DELAYED

– PROCESS-INTERRUPTED
– PROCESS-SUSPENDED

July 31, 2005 Denver LISP User’s Group 38

PLT Scheme
Simulation Collection Example 1 – Processes

; Example 1 - Processes

(require (lib "simulation.ss" "simulation"))
(require (lib "random-distributions.ss" "science"))

(define-process (generator n)
(do ((i 0 (+ i 1)))

((= i n) (void))
(wait (random-exponential 4.0))
(schedule now (customer i))))

(define-process (customer i)
(printf "~a: customer ~a enters~n" (current-simulation-time) i)
(work (random-flat 2.0 10.0))
(printf "~a: customer ~a leaves~n" (current-simulation-time) i))

(define (run-simulation n)
(with-new-simulation-environment
(schedule (at 0.0) (generator n))
(start-simulation)))

July 31, 2005 Denver LISP User’s Group 39

PLT Scheme
Simulation Collection Example 1 – Output

(run-simulation 10)
0.6153910608822503: customer 0 enters
5.599485116393393: customer 1 enters
6.411843645405005: customer 2 enters
8.48917994426752: customer 0 leaves
10.275428842274628: customer 1 leaves
14.749397986170655: customer 2 leaves
23.525886616767437: customer 3 enters
27.18604340910279: customer 3 leaves
32.1644631797164: customer 4 enters
33.14558760001698: customer 5 enters
39.67682614849173: customer 4 leaves
40.486553934113665: customer 6 enters
41.168084930967424: customer 5 leaves
45.72670063299798: customer 6 leaves
46.747675912143016: customer 7 enters
49.212327970772435: customer 8 enters
50.556538752352886: customer 9 enters
51.46738784004611: customer 8 leaves
52.514846525674855: customer 7 leaves
56.11635302397275: customer 9 leaves

July 31, 2005 Denver LISP User’s Group 40

PLT Scheme
Simulation Collection Resources

• In a simulation model, a resource is an entity (or entities) that is/are
shared among processes.

• A resource is created using the make-resource function.
– (make-resource [units])

• The fields of a resource are:
– units Total number of units
– units-available Number of units not allocated
– units-allocated Number of units allocated
– satisfied Set of processes satisfied
– queue Set of processes waited

• The following functions request or relinquish resources:
– (resource-request resource [units])

– (resource-relinquish resource [units])

July 31, 2005 Denver LISP User’s Group 41

PLT Scheme
Simulation Collection Resources (cont’d)

• There are two short-cut functions to variables within the queue and
satisfied sets. They are to simplify data collection.
– (resource-queue-variable-n resource)
– (resource-satisfied-variable-n resource)

• Since the construct
(resource-request resource units)
... ; use the resource
(resource-relinquish resource units)
is used so much – virtually all resource usage has this form – the
with-resource macro is provided.
– (with-resource (resource [units])

body ...)

July 31, 2005 Denver LISP User’s Group 42

PLT Scheme
Simulation Collection Example 2 – Resources

; Example 2 - Resources

(require (lib "simulation.ss" "simulation"))
(require (lib "random-distributions.ss" "science"))

(define n-attendants 2)
(define attendant #f)

(define (generator n)
(do ((i 0 (+ i 1)))

((= i n) (void))
(wait (random-exponential 4.0))
(schedule now (customer i))))

(define-process (customer i)
(printf "~a: customer ~a enters~n" (current-simulation-time) i)
(resource-request attendant)
(printf "~a: customer ~a gets an attendant~n" (current-simulation-time) i)
(work (random-flat 2.0 10.0))
(resource-relinquish attendant)
(printf "~a: customer ~a leaves~n" (current-simulation-time) i))

(define (run-simulation n)
(with-new-simulation-environment
(set! attendant (make-resource n-attendants))
(schedule (at 0.0) (generator n))
(start-simulation)))

July 31, 2005 Denver LISP User’s Group 43

PLT Scheme
Simulation Collection Example 2 – Output

(run-simulation 10)
0.6153910608822503: customer 0 enters
0.6153910608822503: customer 0 gets an attendant
5.599485116393393: customer 1 enters
5.599485116393393: customer 1 gets an attendant
6.411843645405005: customer 2 enters
8.48917994426752: customer 0 leaves
8.48917994426752: customer 2 gets an attendant
10.275428842274628: customer 1 leaves
16.82673428503317: customer 2 leaves
23.525886616767437: customer 3 enters
23.525886616767437: customer 3 gets an attendant
27.18604340910279: customer 3 leaves
32.1644631797164: customer 4 enters
32.1644631797164: customer 4 gets an attendant
33.14558760001698: customer 5 enters
33.14558760001698: customer 5 gets an attendant
39.67682614849173: customer 4 leaves
40.486553934113665: customer 6 enters
40.486553934113665: customer 6 gets an attendant
41.168084930967424: customer 5 leaves
45.72670063299798: customer 6 leaves
46.747675912143016: customer 7 enters
46.747675912143016: customer 7 gets an attendant
49.212327970772435: customer 8 enters
49.212327970772435: customer 8 gets an attendant
50.556538752352886: customer 9 enters
51.46738784004611: customer 8 leaves
51.46738784004611: customer 9 gets an attendant
52.514846525674855: customer 7 leaves
57.02720211166597: customer 9 leaves

July 31, 2005 Denver LISP User’s Group 44

PLT Scheme
Simulation Collection Data Collection

• In general, the purpose for developing a simulation model is to
collect data to analyze to gain insights into the system.

• In the simulation collection, data subject to automatic collection is
stored in variable structures (i.e. variables).

• Data collection for a variable is initiated using either the
accumulate or tally macro.
– The accumulate macro initiates collection of time-dependant data.
– The tally macro initiates collection of data that is not time-dependant.

• There are two categories of data collectors currently implemented in
the simulation collection:
– Statistics
– History

• By default, statistics are accumulated for each variable.

July 31, 2005 Denver LISP User’s Group 45

PLT Scheme
Simulation Collection Variables

• The data to be (automatically) collected in a simulation model is
stored in variables (i.e. variable structures.

• A variable instance (i.e. a variable) is created using the make-
variable function.
– (make-variable [initial-value])

• The fields of interest in the variable structure are:
– value The value of the variable
– statistics The statistics object for the variable, or #f
– history The history object for the variable, or #f

• Data collectors (i.e. statistics or history objects) are automatically
invoked, for example when a variable’s value changes.

• Some simulation objects we’ve already used have fields
implemented as variables.
– resource-queue-variable-n
– resource-satisfied-variable-n

July 31, 2005 Denver LISP User’s Group 46

PLT Scheme
Simulation Collection Accumulate

• The accumulate macro initiates the collection of time-dependant
data for a variable (i.e. an instance of the variable structure).
– (accumulate (variable-statistics variable))
– (accumulate (variable-history variable))

• For time-dependant data, the value for each data point is weighted
by the duration it had that value.
– For example, if you accumulated a variable that had values of 1 for 2

units of time, 2 for 1 units of time, 3 for 2 units of time, and 4 for 3 units
of time, its average would be 22/8 = 2.75.

• The accumulators are synchronized (updated) whenever the
variable value changes or an accumulator for the variable is
referenced.
– Note that synchronization is performed on the variable and all

accumulators for the variable are synchronized.
– Note that a zero duration for a value does not result in synchronization.

July 31, 2005 Denver LISP User’s Group 47

PLT Scheme
Simulation Collection Tally

• The tally macro initiates the collection of data that is not time-
dependant for a variable (i.e. an instance of the variable structure).
– (tally (variable-statistics variable))
– (tally (variable-history variable))

• For data that is not time-dependant, the value for each data point
has a unit weight (i.e., 1).
– For example, if you tallied a variable that had values of 1, 2, 3, and 4,

the average would be 2.5, regardless of the durations of each value.
• The talliers are updated whenever the value of a variable changes.

July 31, 2005 Denver LISP User’s Group 48

PLT Scheme
Simulation Collection Statistics

• The following statistics are provided:
– statistics-n
– statistics-sum
– statistics-mean
– statistics-sum-of-squares
– statistics-mean-square
– statistics-variance
– statistics-standard-deviation
– statistics-maximum
– statistics-minimum

• The variable-statistics function returns the statistics data
collector for a variable or #f if there isn’t one defined.

• Shortcut functions (e.g. variable-n) are provided to access each
statistic for a variable.

• The table on the next slide shows the computations performed for
accumulating or tallying the statistics for a variable.

July 31, 2005 Denver LISP User’s Group 49

PLT Scheme
Simulation Collection Statistics (cont’d)

statistic accumulate tally
n timecurrent - time0 number of samples of X

sum Σ(X*(timecurrent - timeL)) ΣX

mean sum/n sum/n

sum-of-squares Σ(X2*(timecurrent - timeL)) Σ X2

mean-square sum-of-squares/n sum-of-squares/n

variance mean-square - mean2 mean-square - mean2

standard-deviation sqrt (variance) sqrt (variance)

maximum maximum X for all X maximum X for all X

minimum minimum X for all X minimum X for all X

timecurrent = current simulated time
timeL = simulated time variable was set to its current value
time0 = simulated time variable was created, initially assigned a value, or last reset
X = variable value before change occurs

July 31, 2005 Denver LISP User’s Group 50

PLT Scheme
Simulation Collection History

• A history maintains a record of the value of a variable (and durations
for an accumulated history).

• The fields for a history include:
– time-dependent? #t if the history is accumulated
– initial-time Time of the first value
– n Number of entries
– values List of values
– durations List of durations or ()

• Durations are used, as opposed to times, to simplify the use of the
weighted statistics functions in the science collection.

July 31, 2005 Denver LISP User’s Group 51

PLT Scheme
Simulation Collection History Graphics

• The history-plot function provides graphical output of a history
using the PLoT Package and histogram from the science collection.

• Time-dependant (i.e. accumulated) histories are plotted as value
versus time.

• Histories that are not time-dependant (i.e., tallied) are plotted as
histograms.
– If all of the values are discrete, a discrete histogram is used.
– Otherwise, a histogram covering the entire range of values of the history

with 40 bins is used.

July 31, 2005 Denver LISP User’s Group 52

PLT Scheme
Simulation Collection Example 3 – Data Collection

; Example 3 - Data Collection

(require (lib "simulation-with-graphics.ss" "simulation"))
(require (lib "random-distributions.ss" "science"))

(define n-attendants 2)
(define attendant #f)

(define (generator n)
(do ((i 0 (+ i 1)))

((= i n) (void))
(wait (random-exponential 4.0))
(schedule now (customer i))))

(define-process (customer i)
(with-resource (attendant)
(work (random-flat 2.0 10.0))))

July 31, 2005 Denver LISP User’s Group 53

PLT Scheme
Simulation Collection Example 3 – Data Collection (cont’d)

(define (run-simulation n)
(with-new-simulation-environment
(set! attendant (make-resource n-attendants))
(schedule (at 0.0) (generator n))
(accumulate (variable-statistics (resource-queue-variable-n attendant)))
(accumulate (variable-history (resource-queue-variable-n attendant)))
(start-simulation)
(printf "--- Example 3 - Data Collection ---~n")
(printf "Maximum queue length = ~a~n"

(variable-maximum (resource-queue-variable-n attendant)))
(printf "Average queue length = ~a~n"

(variable-mean (resource-queue-variable-n attendant)))
(printf "Variance = ~a~n"

(variable-variance (resource-queue-variable-n attendant)))
(printf "Utilization = ~a~n"

(variable-mean (resource-satisfied-variable-n attendant)))
(printf "Variance = ~a~n"

(variable-variance (resource-satisfied-variable-n attendant)))
(print (history-plot (variable-history

(resource-queue-variable-n attendant))))))

July 31, 2005 Denver LISP User’s Group 54

PLT Scheme
Simulation Collection Example 3 – Output

July 31, 2005 Denver LISP User’s Group 55

PLT Scheme
Simulation Collection More Data Collection Examples

• As trivial as the example system we have been modeling is, there
are still some simulation techniques we can demonstrate using it.

• Up to now, we have been running one run of a simulation model.
This is useful when building the model. But, in general, we want to
run the simulation model many times and look at the distributions of
the outputs.

• The next two examples use the same basic model as Example 2
(and 3), but run it multiple times and generate the distribution of
some output variable of interest.
– Open Loop Example – Running a simulation model open loop means

that whenever a resource request is made, it is immediately granted –
that is, there are infinite resources. In the simulation collection, we do
this by setting the number of resources to +inf.0 (positive infinity).
We look at the distribution of the maximum attendants required.

– Closed Loop Example – Runs the simulation model multiple times (with
a fixed number of attendants). We look at the distribution of average
queue length.

July 31, 2005 Denver LISP User’s Group 56

PLT Scheme
Simulation Collection Open Loop Example

; Open Loop Example

(require (lib "simulation-with-graphics.ss" "simulation"))
(require (lib "random-distributions.ss" "science"))

(define attendant #f)

(define (generator n)
(do ((i 0 (+ i 1)))

((= i n) (void))
(wait (random-exponential 4.0))
(schedule now (customer i))))

(define-process (customer i)
(with-resource (attendant)
(wait/work (random-flat 2.0 10.0))))

July 31, 2005 Denver LISP User’s Group 57

PLT Scheme
Simulation Collection Open Loop Example (cont’d)

(define (run-simulation n1 n2)
(with-new-simulation-environment
(let ((max-attendants (make-variable)))

(tally (variable-statistics max-attendants))
(tally (variable-history max-attendants))
(do ((i 1 (+ i 1)))

((> i n1) (void))
(with-new-simulation-environment
(set! attendant (make-resource +inf.0))
(schedule (at 0.0) (generator n2))
(start-simulation)
(set-variable-value! max-attendants
(variable-maximum (resource-satisfied-variable-n attendant)))))

(printf "--- Open Loop Example ---~n")
(printf "Number of experiments = ~a~n"

(variable-n max-attendants))
(printf "Minimum maximum attendants = ~a~n"

(variable-minimum max-attendants))
(printf "Maximum maximum attendants = ~a~n"

(variable-maximum max-attendants))
(printf "Mean maximum attendants = ~a~n"

(variable-mean max-attendants))
(printf "Variance = ~a~n"

(variable-variance max-attendants))
(print (history-plot (variable-history max-attendants)

"Maximum Attendants"))
(newline))))

July 31, 2005 Denver LISP User’s Group 58

PLT Scheme
Simulation Collection Open Loop Example – Output

July 31, 2005 Denver LISP User’s Group 59

PLT Scheme
Simulation Collection Closed Loop Example

; Closed Loop Example

(require (lib "simulation-with-graphics.ss" "simulation"))
(require (lib "random-distributions.ss" "science"))

(define n-attendants 2)
(define attendant #f)

(define (generator n)
(do ((i 0 (+ i 1)))

((= i n) (void))
(wait (random-exponential 4.0))
(schedule now (customer i))))

(define-process (customer i)
(with-resource (attendant)
(work (random-flat 2.0 10.0))))

July 31, 2005 Denver LISP User’s Group 60

PLT Scheme
Simulation Collection Closed Loop Example (cont’d)

(define (run-simulation n1 n2)
(let ((avg-queue-length (make-variable)))

(tally (variable-statistics avg-queue-length))
(tally (variable-history avg-queue-length))
(do ((i 1 (+ i 1)))

((> i n1) (void))
(with-new-simulation-environment
(set! attendant (make-resource n-attendants))
(schedule (at 0.0) (generator n2))
(start-simulation)
(set-variable-value! avg-queue-length

(variable-mean (resource-queue-variable-n attendant)))))
(printf "--- Closed Loop Example ---~n")
(printf "Number of attendants = ~a~n" n-attendants)
(printf "Number of experiments = ~a~n"

(variable-n avg-queue-length))
(printf "Minimum average queue length = ~a~n"

(variable-minimum avg-queue-length))
(printf "Maximum average queue length = ~a~n"

(variable-maximum avg-queue-length))
(printf "Mean average queue length = ~a~n"

(variable-mean avg-queue-length))
(printf "Variance = ~a~n"

(variable-variance avg-queue-length))
(print (history-plot (variable-history avg-queue-length) "Average Queue Length"))
(newline)))

July 31, 2005 Denver LISP User’s Group 61

PLT Scheme
Simulation Collection Closed Loop Example – Output

July 31, 2005 Denver LISP User’s Group 62

PLT Scheme
Simulation Collection Sets

• A set is a general structure that maintains a list of its elements.
• In the simulation collection, a set is implemented as a doubly-linked

list (for efficient insertion and deletion). Also, the number of
elements in the set is implemented as a variable for data collection.

• Sets are created using the make-set function. The type of set,
fifo or lifo, can be specified. The default type is fifo.
– (make-set [type])

• The number of elements in a set is available using the function
set-n. The associated variable is available using the function
set-variable-n.

• The set-empty? predicate function is #t if the specified set is
empty, and #f otherwise.

• The functions set-first and set-last return the first or the last
element of the specified set, respectively.

July 31, 2005 Denver LISP User’s Group 63

PLT Scheme
Simulation Collection Sets (cont’d)

• The are many operations defined on sets, including:
– (set-insert! set item)
– (set-insert-first! set item)
– (set-insert-last! set item)

– (set-remove! set [item])
– (set-remove-first! set [error-thunk])
– (set-remove-last! set [error-thunk])

• There are also iterators defined:
– (set-for-each-cell set proc)
– (set-for-each set proc)

• The set-find-cell function returns the cell containing the
specified element, or #f.

• Note that the names of the set field mutators look a bit strange, e.g.
set-set-n!, but they should never be seen in user code.

July 31, 2005 Denver LISP User’s Group 64

PLT Scheme
Simulation Collection Furnace Model 1

• This is a model of an industrial furnace that heats ingots for some
industrial process. Subsequent versions of this model will be used
to demonstrate the continuous simulation capability, but this one is
strictly a discrete-event simulation.

• The model uses a set, furnace, to keep track of ingots that are in
the furnace.
– (set-variable-n furnace) is used for data collection.

• Note the use of the self variable within the ingot process. It
refers to that specific instance of the process.

• Note the use of make-random-source-vector to create a vector of
random sources for the simulation model.

• The code is provided in a separate handout.

July 31, 2005 Denver LISP User’s Group 65

PLT Scheme
Simulation Collection Furnace Model 1 – Output

July 31, 2005 Denver LISP User’s Group 66

PLT Scheme
Simulation Collection Continuous Simulation Models

• The simulation collection provides both discrete-event and
continuous simulation capabilities.

• Continuous variables contain the state data for a continuous model.
• A continuous model is defined using the work/continuously

special form.
• The ordinary differential equation routines for initial value problems

provided by the science collection (and ported from the GNU
Scientific Library) are used for integrating the differential equations
that define a continuous model.
– Any of the ODE steppers that don’t require a Jacobian matrix can be

used.
– The standard ODE control is used by default, but its parameters can be

changed; an alternative can be used; or you can specify there is no
control function (i.e. fixed step size) by setting it to #f.

– The ODE evolver is used and the step-size can be limited.

July 31, 2005 Denver LISP User’s Group 67

PLT Scheme
Simulation Collection Continuous Simulation Models (cont’d)

• The set of differential equations being evaluated changes as
processes enter or leave working/continuously statements.

• All of the continuous variables for the processes that are currently
working continuously are stored a state vector representing the state
of the (continuous) system.
– For continuous variables that are in processes that are currently working

continuously, variable value works on the state vector.
• All of the differential equations for all of the processes that are

currently working continuously are evaluated at the same time under
the control of the ODE stepper.

July 31, 2005 Denver LISP User’s Group 68

PLT Scheme
Simulation Collection Continuous Variables

• Continuous variables are used to implement continuous models.
• The make-continuous-variable function creates a continuous

variable.
– (make-continuous-variable [initial-value])

• When a continuous variable is used outside the context of a process
that is currently working continuously, it works like a normal variable.

• In the context of a process that is currently working continuously,
variable value works on the value in the state vector.

• Continuous variables have an additional (pseudo-)field, variable-
dt, that is the computed derivative of the variable.
– The derivative value is computed in the continuous models as specified

in a work/continuously statement.
• A continuous variable is a variable and all of the corresponding data

collection capabilities are available.

July 31, 2005 Denver LISP User’s Group 69

PLT Scheme
Simulation Collection Simulation Control (Continuous)

• The main change to the simulation control routines from a user’s
perspective is the addition of the work/continuously macro.

• The work/continuously macro defines a continuous model.
– (work-continuously

[until condition]
body ...)

• The condition specifies the terminating condition, if any, for the
continuous model.

• The body expressions should compute the derivatives for any
continuous variables in the continuous model.
– The body expressions shouldn’t have any side effects other than setting

the derivatives.
• When a work/continuously form is evaluated, it adds an event to the

continuous event list.

July 31, 2005 Denver LISP User’s Group 70

PLT Scheme
Simulation Collection Simulation Control (Continuous) (cont’d)

• The start-simulation function (i.e. the main simulation loop)
has been enhanced to support continuous models.
– When there are events on the continuous event list and the main loop

needs to advance the time (i.e. execute a future event), rather than just
jumping right to that time, it evaluates the continuous models on the
continuous event list and advances time in small (controlled) steps.

– At the end of each step, the terminating are evaluated. If any are true,
the corresponding process is resumed (i.e. added to the now event list)
to continue execution past the work/continuously form.

– Also, at the end of each step, the continuous variables are set from the
values in the state vector. This allows any data collectors to run.

July 31, 2005 Denver LISP User’s Group 71

PLT Scheme
Simulation Collection Should there be a wait/continuously?

• When I was preparing this talk, I thought making a flippant remark
like, “I should have implemented a wait/continuously,” would be
funny. Unfortunately, it started me thinking and I’ve pretty much
convinced myself that it would actually is useful.

• If we have a work/continuously call that has a terminating
condition but no body expressions, we essentially are waiting
continuously.

• An example with the furnace model might be a thermostat that waits
until the temperature exceeds some desired temperature. A
wait/continuously call to do this might look like:
(wait/continuously

until (>= (variable-value furnace-temp)
desired-temp))

• Should there be a wait/continuously?

July 31, 2005 Denver LISP User’s Group 72

PLT Scheme
Simulation Collection Furnace Model 2

• We extend the furnace model to include a continuous model of the
ingot heating.

• The current ingot temperature is stored in the continuous variable
current-temp.

• The continuous model of the ingot heating is:
– (work/continuously

until (>= (variable-value current-temp)
final-temp)

(set-variable-dt! current-temp
(* (- furnace-temp (variable-value current-temp))

heat-coeff)))

• There is also more data collection.
– Every 100th ingot we plot the history of current-temp.

• The code is provided in a separate handout.

July 31, 2005 Denver LISP User’s Group 73

PLT Scheme
Simulation Collection Furnace Model 2 – Output

July 31, 2005 Denver LISP User’s Group 74

PLT Scheme
Simulation Collection Furnace Model 2 – Output (cont’d)

July 31, 2005 Denver LISP User’s Group 75

PLT Scheme
Simulation Collection Furnace Model 2 – Output (cont’d)

July 31, 2005 Denver LISP User’s Group 76

PLT Scheme
Simulation Collection Furnace Model 2a

• Looking at the history plot of the ingot heating, we see a step
function. Looking at the plot of final ingot temperatures, we see that
we overshoot the 1000 degree mark (which was supposed to be our
upper limit) by almost 20 degrees in some cases. What gives?
– First, the model is doing exactly what we told it to do. (Or at least what I

designed it to do.)
– The differential equations are very well behaved – in fact, they are

almost linear. The default ODE controller can set the step size rather
high and still have an error estimate AT THE POINTS THAT ARE
EVALUATED within our specified tolerance (which defaults to 1.0e-6).

• This would be great if we had, for example, known exactly how long each
ingot was to be heated. For example, we would know rather precisely the
ingot temperature after, say, 2.5 hours.

• We will modify the model to provide a fixed step size of 1 (simulated)
minute (e.g. 1/60 hour).

July 31, 2005 Denver LISP User’s Group 77

PLT Scheme
Simulation Collection Furnace Model 2a (cont’d)

• The following code is added to the initialize routine.
– (current-simulation-step-size (/ 1.0 60.0))

(current-simulation-control #f)

• The first line sets the step size to 1 minute, since the basic time unit
is hours.

• The second lines removes the default ODE control that changes the
step size. With no ODE control, we have a fixed step size.

• You can look at the ODE section of the PLT Scheme Science
Collection Reference Manual for more details.

• The code is provided in a separate handout.

July 31, 2005 Denver LISP User’s Group 78

PLT Scheme
Simulation Collection Furnace Model 2a – Output

July 31, 2005 Denver LISP User’s Group 79

PLT Scheme
Simulation Collection Furnace Model 2a – Output (cont’d)

July 31, 2005 Denver LISP User’s Group 80

PLT Scheme
Simulation Collection Furnace Model 2b

• An alternative is to keep the ODE control, but limit the step size.
– This allows the step size to float, subject to the upper limit.
– Still maintains the accuracy control for step sizes below the upper limit.

(The accuracy should also be there at the limit.)
• The following code is added to the initialize routine.

– (current-simulation-max-step-size (/ 1.0 60.0))

• The code is provided in a separate handout.
• The results are almost identical to Furnace Model 2b and are also

provided in a separate handout.

July 31, 2005 Denver LISP User’s Group 81

PLT Scheme
Simulation Collection Furnace Model 3

• Furnace Model 3 extends the model to include a continuous model
of the furnace itself.

• The furnace model is an example of a continuous model with no
terminating condition. It will run forever if not explicitly stopped.

• It also shows how continuous variables from outside of the process
can be used in the differential equations.

• The output is similar to that of Furnace Model 2a and 2b and is not
included here. It is provided in a separate handout.

• The code is provided in a separate handout.

July 31, 2005 Denver LISP User’s Group 82

PLT Scheme
Simulation Collection Simulation Classes

• The simulation collection also provide an object oriented interface to
user defined simulation objects.
– Currently just processes and resources.

• Uses the class collection provided with PLT Scheme.
• It is not integrated into the rest of the simulation collection as it might

be,
– The good news about that is that there are no dependencies on the PLT

Scheme class collection.
• Alternate object-oriented mechanisms can be used.

– The bad news is that none of the convenience macros (e.g., with-
resource) know about the classes.

• The process% class does provide an abstraction that is lacking in
standard processes.
– User specified state information can be encapsulated and shared.

July 31, 2005 Denver LISP User’s Group 83

PLT Scheme
Simulation Collection Discussion: Simulation Classes

• One of the problems with Scheme in general is the lack of a
standard class system for the language. As a result, there are a
myriad of alternative class packages floating around.
– PLT Scheme does have a standard class collection. However, the

definition of the ‘standard’ class collection has changed over time.
There is no reason to believe it won’t again.

– If I do embrace the use of classes throughout the simulation collection, it
will use the PLT Scheme class collection.

• Is an object-oriented (i.e. class-based) interface important for
languages embedded in Scheme?

• Is the ability to use alternative class implementations important?

July 31, 2005 Denver LISP User’s Group 84

PLT Scheme
Simulation Collection Process Classes

• A process class is an object-oriented representation of a process.
– It encapsulates a process object.
– Allows the sharing of user-defined process state information via fiends

in the process class.
• The define-process-class macro defines a new process class.

– (define-process-class (name [superclass-expr])
class-clause
…
body-expr)

• For the specification of class clauses, see the documentation for the
PLT Scheme class collection in the MzLib documentation.

• The body-expr is a single expression that is the body of the
encapsulated process.
– Don’t forget to use begin if there are multiple expressions for the

process body – which is the normal case.

July 31, 2005 Denver LISP User’s Group 85

PLT Scheme
Simulation Collection Process Classes (cont’d)

• The encapsulated process is scheduled immediately (i.e. now) when
an instance of a process class is created.
– These are different semantics than processes, which are created using

the schedule macro.
• The process% class provides the following methods:

– get-state
– get-time
– set-time

– interrupt

– resume

July 31, 2005 Denver LISP User’s Group 86

PLT Scheme
Simulation Collection Resources Classes

• A resource class is an object oriented representation of a resource.
– It encapsulates a resource.

• The define-resource-class macro defines a resource class.
– (define-resource-class (name [superclass-expr])

class-clause
...)

• For the specification of class clauses, see the documentation for the
PLT Scheme class collection in the MzLib documentation.

• The resource% class has a units init-field that is used to specify
the number of units for an instance of a resource class.

• The resource% class provides the following methods:
– request
– relinquish
– satisfied-variable-n
– queue-variable-n

July 31, 2005 Denver LISP User’s Group 87

PLT Scheme
Simulation Collection Example 4 – Simulation Classes

; Example 4 - Classes

(require (lib "simulation-with-graphics.ss" "simulation"))
(require (lib "random-distributions.ss" "science"))

(define n-attendants 2)
(define attendant #f)

(define-process-class generator%
(init-field (n 1000))
(do ((i 0 (+ i 1)))

((= i n) (void))
(wait (random-exponential 4.0))
(make-object customer% i)))

(define-process-class customer%
(init-field i)
(begin
(send attendant request)
(work (random-flat 2.0 10.0))
(send attendant relinquish)))

July 31, 2005 Denver LISP User’s Group 88

PLT Scheme
Simulation Collection Example 4 – Simulation Classes (cont’d)

(define (run-simulation n)
(with-new-simulation-environment
(set! attendant (make-object resource% n-attendants))
(make-object generator% n)
(accumulate (variable-statistics (send attendant queue-variable-n)))
(accumulate (variable-history (send attendant queue-variable-n)))
(start-simulation)
(printf "--- Example 4 - Classes ---~n")
(printf "Maximum queue length = ~a~n"

(variable-maximum (send attendant queue-variable-n)))
(printf "Average queue length = ~a~n"

(variable-mean (send attendant queue-variable-n)))
(printf "Variance = ~a~n"

(variable-variance (send attendant queue-variable-n)))
(printf "Utilization = ~a~n"

(variable-mean (send attendant satisfied-variable-n)))
(printf "Variance = ~a~n"

(variable-variance (send attendant satisfied-variable-n)))
(print (history-plot (variable-history

(send attendant queue-variable-n))))))

July 31, 2005 Denver LISP User’s Group 89

PLT Scheme
Simulation Collection Example 4 – Output

July 31, 2005 Denver LISP User’s Group 90

PLT Scheme
Simulation Collection Simulation Control (Advanced)

• The advanced simulation control functions allow process to suspend
themselves or for processes to interrupt or resume other processes.

• These can be used to implement inter-process control strategies
that are more complex than, for example, resources.

• The suspend-process function allows a process to suspend itself.
– (suspend-process)

• The interrupt-process allows one process to interrupt another
process. The interrupted process must currently be in a
wait/work.
– (interrupt-process process)

– The event-time field of the event for the process is set to the amount
of time remaining in the wait/work.

July 31, 2005 Denver LISP User’s Group 91

PLT Scheme
Simulation Collection Simulation Control (Advanced) (cont’d)

• The resume-process allows an interrupted process to be
resumed.
– (resume-process process)
– The event-time field of the event for the process specifies the time

remaining in the wait/work.
• Note that suspend-process sets the event-time field of the

event for the process to zero. Therefore, a resume-process can
be used to resume a suspended process also.

July 31, 2005 Denver LISP User’s Group 92

PLT Scheme
Simulation Collection Harbor Model

• The Harbor Model demonstrates the use of advanced simulation
control.

• Ships are modeled using a process class, ship%. The ship% class
has an unloading-time field that is accessible outside of the
process.

• The dock contains up to two ships. A single ship can be unloaded
twice as fast as two ships.

• The harbor master is called whenever a ship arrives or leaves. It
allocated ships to the dock; adjusts the unloading time based on the
number of ships in the dock; and removes ships from the queue as
needed.
– The harbor master is a procedure, not a process. It’s actions are

instantaneous and no timing is required.
• The code is provided in a separate handout.

July 31, 2005 Denver LISP User’s Group 93

PLT Scheme
Simulation Collection Harbor Model – Output

July 31, 2005 Denver LISP User’s Group 94

PLT Scheme
Simulation Collection Simulation Environments (Hierarchical)

• Hierarchical simulation environments allow simulation objects and
events to be distributed across a tree of simulation environments.

• Each simulation environment has a unique parent simulation
environment – except a root simulation environment that has no
parent.

• Each simulation environment has a, possible empty, list of children
simulation environments.

• A single simulation main loop controls the execution of an entire tree
of simulation environments from its root.

• A single event in the parent simulation environment represents a
child simulation environment.
– This event may be on the now event list or the future event list

depending on the next event to be executed in the child simulation
environment.

• All continuous events are rolled up to the root level.

July 31, 2005 Denver LISP User’s Group 95

PLT Scheme
Simulation Collection Simulation Environments (Hierarchical) (cont’d)

• Note that this affect independent simulation environments such as
were used in the Open-Loop and Closed-Loop examples.

• Hierarchical simulation environments can also form the basis for
distributed simulation execution.

• The implementation of hierarchical simulation environment is not
complete, but is planned for Version 1.0.

July 31, 2005 Denver LISP User’s Group 96

PLT Scheme
Simulation Collection Components

• A component encapsulates a child simulation environment and a set
of simulation objects.

• For example, the Furnace Model may be extended to include a plant
component.
– The plant component would, in turn, include the soaking pits and

furnaces at a location.
– The plant component could then be instantiated multiple times to

represent multiple plant instances.
• It is likely, that all components will be implemented as component

classes.
• Components and component classes have not yet been

implemented, but are planned for Version 1.0.

July 31, 2005 Denver LISP User’s Group 97

PLT Scheme
Simulation Collection

Future Plans

July 31, 2005 Denver LISP User’s Group 98

PLT Scheme
Simulation Collection

Questions and Answers

July 31, 2005 Denver LISP User’s Group 99

PLT Scheme
Simulation Collection

Workshop

July 31, 2005 Denver LISP User’s Group 100

PLT Scheme
Simulation Collection Workshop

• The purpose of the workshop is to help anyone interested in getting
the PLT Scheme Simulation Collection, and therefore the PLT
Scheme Science Collection, up and running.

• Install PLT Scheme (also known as DrScheme)
– The current versions of the science and simulation collections require

PLT Scheme Version 299.
• There are source code differences that preclude running them on Version

209.
• We need Version 299.400 or later. Earlier 299 versions had a bug in the

PLoT package that caused some graphics routines to fail.
• There are version for Windows (95 and up), Mac OS X, Mac OS Darwin,

Linux (various flavors), UNIX (various flavors), or from source code.
– Use the ‘Pretty Big (includes MrEd and Advanced)’ language option.

• Install the PLT Scheme Science Collection and PLT Scheme
Simulation Collection in a local collects directory.

July 31, 2005 Denver LISP User’s Group 101

PLT Scheme
Simulation Collection Workshop (cont’d)

• Test the installation by running the examples.
– PLT Scheme Science Collection examples
– PLT Scheme Simulation Collection examples

• Reference manuals are available as pdf files.
– The PLT Scheme Science Collection Reference Manual, Version 2.0 is

complete.
– The PLT Scheme Simulation Collection Reference Manual, Version 1.0

is still a draft, but it largely complete.
• Workshop Examples

– These are from SimPy – a Python simulation package that some in the
group have used in the past

– Jackson - A simulation of messages passing through a network of
queues

– Cellphone – A cell phone system

July 31, 2005 Denver LISP User’s Group 102

PLT Scheme
Simulation Collection Contact Information

• M. Douglas Williams, PhD
Sr. Scientist
Science Applications International Corporation
Denver, CO
m_douglas_williams@saic.com
(303) 229-0315

mailto:m_douglas_williams@saic.com

	PLT SchemeKnowledge-Based SimulationPart 2 – The Simulation Collection
	Agenda
	Introduction
	Motivation
	PLT Scheme Collections
	PLT Scheme Science Collection
	PLT Scheme Simulation Collection
	PLT Scheme Inference Collection
	Status
	Schedule
	Simplified Simulation Example
	Simplified Simulation Example
	Continuations
	Continuations (cont’d)
	Continuations (cont’d)
	Continuations (cont’d)
	Event Definition and Scheduling
	Event Definition and Scheduling Code
	Simulation Control
	Simulation Control Code
	Simulation Control Code (cont’d)
	Random Distributions
	Example Simulation Model
	Example Simulation Model Code
	Example Simulation Model Output
	PLT Scheme Simulation Collection
	PLT Scheme Simulation Collection
	Simulation Environment (Basic)
	Simulation Environment (Basic) (cont’d)
	Current Simulation Environment
	Current Simulation Environment (cont’d)
	Simulation Control (Basic)
	Events
	Example 0 – Events
	Example 0 – Output
	Processes
	Processes (cont’d)
	Example 1 – Processes
	Example 1 – Output
	Resources
	Resources (cont’d)
	Example 2 – Resources
	Example 2 – Output
	Data Collection
	Variables
	Accumulate
	Tally
	Statistics
	Statistics (cont’d)
	History
	History Graphics
	Example 3 – Data Collection
	Example 3 – Data Collection (cont’d)
	Example 3 – Output
	More Data Collection Examples
	Open Loop Example
	Open Loop Example (cont’d)
	Open Loop Example – Output
	Closed Loop Example
	Closed Loop Example (cont’d)
	Closed Loop Example – Output
	Sets
	Sets (cont’d)
	Furnace Model 1
	Furnace Model 1 – Output
	Continuous Simulation Models
	Continuous Simulation Models (cont’d)
	Continuous Variables
	Simulation Control (Continuous)
	Simulation Control (Continuous) (cont’d)
	Should there be a wait/continuously?
	Furnace Model 2
	Furnace Model 2 – Output
	Furnace Model 2 – Output (cont’d)
	Furnace Model 2 – Output (cont’d)
	Furnace Model 2a
	Furnace Model 2a (cont’d)
	Furnace Model 2a – Output
	Furnace Model 2a – Output (cont’d)
	Furnace Model 2b
	Furnace Model 3
	Simulation Classes
	Discussion: Simulation Classes
	Process Classes
	Process Classes (cont’d)
	Resources Classes
	Example 4 – Simulation Classes
	Example 4 – Simulation Classes (cont’d)
	Example 4 – Output
	Simulation Control (Advanced)
	Simulation Control (Advanced) (cont’d)
	Harbor Model
	Harbor Model – Output
	Simulation Environments (Hierarchical)
	Simulation Environments (Hierarchical) (cont’d)
	Components
	Future Plans
	Questions and Answers
	Workshop
	Workshop
	Workshop (cont’d)
	Contact Information

