[plt-scheme] Code review: garden fence encryption
Marek, here is an improved version of the code. I meant to send it
last night, plus a Typed Scheme version, but that effort turned into
a large distraction. You may want to compare these drafts by putting
them next to each other to see how I refactor and improve the code.
-- Matthias
P.S. The most pleasurable part was to see a generative mutual
recursion in a form that I had never encountered before in a
practical setting.
#lang scheme
(require srfi/1 htdp/testing)
;;;;
;;;; An example:
;;;;
;;;; 1. d k = (d k) = "dk"
;;;; 2. i n l = (i n l) = "inl"
;;;; 3. e i a = (e i a) = "eia"
;;;; 4. s e r t = (s e r t) = "sert"
;;;; 5. i t t x = (i t t x) = "ittx"
;;;; 6. s e = (s e) = "se"
;;;;
;;;; Then the resulting encrypted text is "dkinleiasertittxse",
;;;; which results in appending the characters from all lines, starting
;;;; with the first.
;;;;
;;;; More details (in german) on the web:
;;;; <http://www.webplain.de/foren/read.php?1,8094>
;;; Decrypts an encrypted text using the given height as key
;;; works by constructing a zigzag structure but not containing the
;;; letters but rather the positions in the original string
;;; the positions get mapped to letters to reconstruct the plaintext
;;;
;;; Using the example from the header, the fence with numbers looks
;;; like this
;;;
;;; 1. 0 10 = (0 10)
;;; 2. 1 9 11 = (1 9 11)
;;; 3. 2 8 12 = (2 8 12)
;;; 4. 3 7 13 17 = (3 7 13 17)
;;; 5. 4 6 14 16 = (4 6 14 16)
;;; 6. 5 15 = (5 15)
;;;
;;; The resulting lists get flattened and are used to map the
;;; characters back to their original, plaintext position.
;; String Nat -> String
;; encrypt according to fence shape
(check-expect (encrypt "diesisteinklartext" 6) "dkinleiasertittxse")
(define (encrypt str h)
(list->string (fence (string->list str) h)))
;; String Nat -> String
;; decrypt according to fence shape
(check-expect (decrypt (encrypt "diesisteinklartext" 6) 6)
"diesisteinklartext")
(define (decrypt str h)
(local ((define e (fence (build-list (string-length str) (lambda
(i) i)) h))
(define x (map list e (string->list str)))
(define y (sort x (lambda (i j) (<= (first i) (first j)))))
(define z (map second y)))
(list->string z)))
;; [Listof X] -> [Listof X]
;; 1 5 9
;; 2 4 6 8 10
;; 3 7 11 ...
(check-expect (fence '(1 2 3 4 5 6) 3) '(1 5 2 4 6 3))
(check-expect (fence '(1 2 3 4 5 6 7 8 9 10 11) 3) '(1 5 9 2 4 6 8 10
3 7 11))
(define (fence lox h)
(local ((define a (apply append (transpose (waves lox h)))))
(filter (lambda (e) (not (eq? X e))) a)))
(define X '_) ;; a unique tag for padding the data structure
;; [Listof X] Nat -> [Listof [Listof (U X Char)]]
;; chop the list into up and down waves (reversed from diagram)
;; pad the down waves at beginning and end
;;
(check-expect (waves '(d i e s i s t e i n k l a r t e x t) 6)
'((d i e s i s) (_ n i e t _) (k l a r t e) (_ _ _ t x
_)))
(check-expect (waves '(d i e s i) 3) '((d i e) (_ s _) (i _ _)))
(define (waves str h)
(local ((define (down str)
(cond
[(>= h (length str)) (list (fill h str))]
[else (cons (take str h) (up (drop str h)))]))
(define (up str)
(cond
[(>= (- h 2) (length str)) (list (pad (fill (- h 2)
str)))]
[else (cons (pad (take str (- h 2))) (down (drop str
(- h 2))))]))
(define (pad str) (append (list X) (reverse str) (list X)))
(define (fill h str) (append str (make-list (- h (length
str)) X))))
(down str)))
;; [Listof [Listof X]] -> [Listof [Listof X]]
;; transpose the matrix
(check-expect
(transpose '((d i e s i s) (_ n i e t _) (k l a r t e) (_ _ _ t x _)))
'((d _ k _) (i n l _) (e i a _) (s e r t) (i t t x) (s _ e _)))
(define (transpose m)
(cond
[(empty? (first m)) '()]
[else (cons (map first m) (transpose (map rest m)))]))
(test)