<html><head></head><body style="word-wrap: break-word; -webkit-nbsp-mode: space; -webkit-line-break: after-white-space; "><br><div class="AppleOriginalContents"><div>On Nov 19, 2009, at 4:59 PM, Neil Toronto wrote:</div><br class="Apple-interchange-newline"><blockquote type="cite"><div>Jon Rafkind wrote:<br><blockquote type="cite">http://www.maa.org/devlin/LockhartsLament.pdf<br></blockquote><font class="Apple-style-span" color="#006312"><br></font>Does anybody know of a list of example problems like the ones he gives in the essay? I'd love to have a big list of math teasers to draw from for dinner conversation with my kids.<br></div></blockquote></div><br><div>Well, you could take a look at "CS Unplugged".</div><div><br></div><div>Of course there are Fibonacci numbers. &nbsp;How much bigger is each Fibonacci number than the previous one? &nbsp;The ratio seems to be alternating bigger and smaller, but the "bigger" and "smaller" are getting closer to one another. &nbsp;Where will they meet? &nbsp;Is this number interesting in any other ways? &nbsp;What if I started the Fibonacci sequence with something other than 1 and 1?</div><div><br></div><div>Use your calculator (or, better yet, DrScheme) to write various fractions in decimal. &nbsp;Some of them end after a fixed number of digits, while others repeat digits indefinitely. &nbsp;Which are which? &nbsp;1/9 repeats a single digit forever; 1/11 repeats a pair of digits forever; 1/7 repeats six digits forever. &nbsp;Can you predict, given the number n, whether 1/n will be repeating, and if so, how many digits will be in the repeating pattern? &nbsp;What if you write it in a base other than ten?</div><div><br></div></body></html>